Approaches to handle missing follow-up time: A comparative analysis of contralateral breast cancer incidence

Sarah Haile, Miriam Wanner, Dimitri Korol, Sabine Rohrmann

Epidemiology, Biostatistics and Prevention Institute (EBPI),
University of Zurich, Zurich, Switzerland;
Cancer Registry of the Cantons of Zurich, Zug,
Schaffhausen and Schwyz, Switzerland

GRELL & ENCR - 2025 Scientific Meeting

The problem: missing vital status or follow-up time

- Complete vital status data is essential in cancer registries
- Not always possible due to missing or incorrect linkage
- "missed deaths" / "immortal" subjects stick around in the cancer registry, even if the situation has improved
- How do we handle these cases properly?

A way to explore the existence of "immortals" in cancer registry data -An illustration using data from ICBP

Bjørn Møller ^d, Melina Arnold ^c, Isab Hazem Abd Elkader ^f, Gerda Engholr Lorraine Shack kl, Paul M. Walsh m Paul C. Lambert a b

SURVMARK-2

Detection of missed deaths Therese M.-L. Andersson ° ♠ ☑, Mq in cancer registry data to reduce bias in long-term survival estimation

Stefan Dahm*, Benjamin Barnes and Klaus Kravwinkel

Bundesgesetz über die Registrierung von Krebserkrankungen

(Krebsregistrierungsgesetz, KRG)

vom 18. März 2016 (Stand am 1. September 2023)

Potential solutions

- Ignore it
- exclude
- "simulation" / Single imputation
- Multiple imputation

• ...

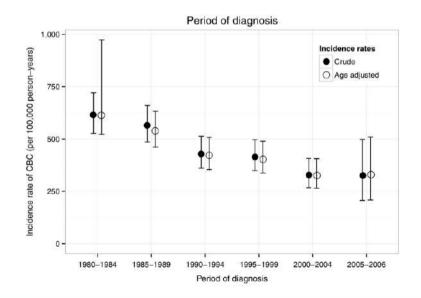
and 2015. We excluded women with a prior cancer, women diagnosed at age <30 or age 86 and older, had unknown laterality, undocumented nodal status, invasive cancers with histology not of ductal, lobular or mixed (ductal–lobular) subtype, in situ cancers with a histology not of ductal, discordant data entry in the SEER database (i.e. T stage classified a at least T1, but stage was classified as stage Ol, missing follow-up had bilateral breast cancer or stage IV disease. We excluded women who had no surgery and those who had a heast cancer, acam or end or study period (37 December 2011). Decame or insufficient follow-up in most cases, person-years was simulated with Swiss breast cancer survival data provided by NICER. A constant hazard rate of 0.0575 y⁻¹ for survival after UBC was assumed for the whole period from 1980 to 2011 to compute random survival time.

MI-D

Multiple			Sir
imputation	Α	MI-A	Ag
	В	MI-B	Ag
			33
	С	MI-C	Ag

Simulated 20× using based on the following variables:
Age, age², period, period², language region (German, French, Italian)
Age, age², period, period², language region (German, French, Italian), vital status (δ), baseline hazard, presence of multiple primary tumors
Age, age², period, period², language region (German, French, Italian), presence of multiple primary tumors
Age, age², period, period², language region (German, French, Italian), vital status (δ), baseline hazard, presence of multiple primary tumors

Better tools for better estimates: improving approaches to handling missing data in Swiss cancer registries


Cornelia Richter^{a,b,c}, Lea Wildisen^{b,c}, Sabine Rohrmann^{a,b} and Sarah R. Haile^a

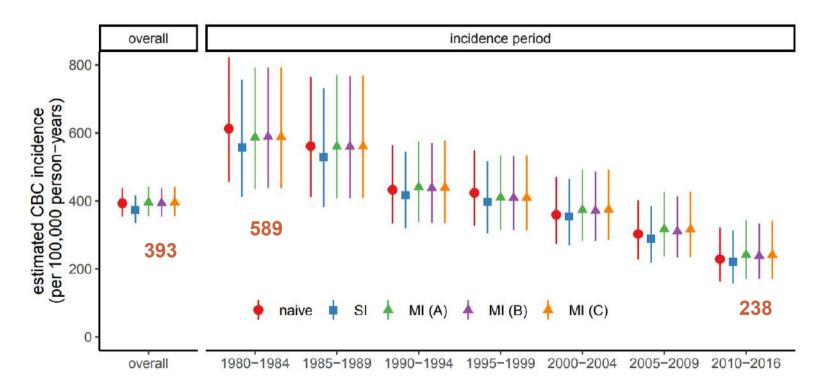
Application to incidence of contralateral breast cancer:

update previous analysis - 10 years later

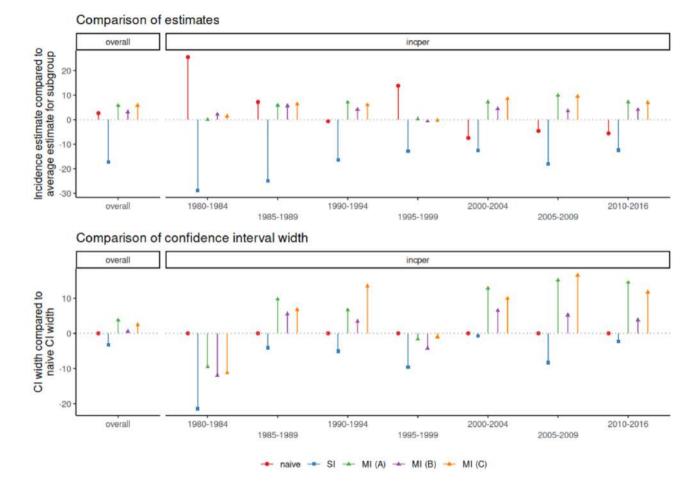
Incidence of metachronous contralateral breast cancer in the Canton of Zurich: a population-based study of the cancer registry

Julia Prater¹ · Fabio Valeri^{1,2} · Dimitri Korol¹ · Sabine Rohrmann³ · Silvia Dehler¹

Cantons of Zurich and Zug:

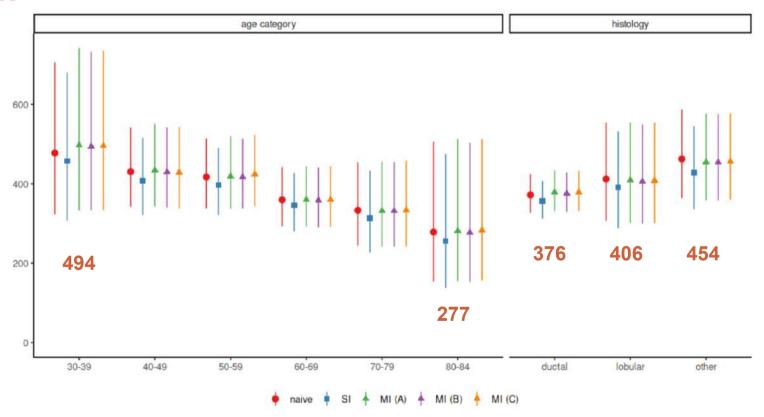

- 1.7M inhabitants,
- 20% of Swiss population,
- cancer registry since 1980 (Zug 2011)

Methods


N = 24,612 (n = 1264 [5%] were lost to follow-up)

Method	details
Naive (NI)	(no change to person-years or vital status)
Single imputation (SI)	Follow-up time "simulated" 1x with average hazard rate of 0.0591 per year (based on Swiss-wide data for breast cancer)
Multiple Imputation (MI)	Imputed 25 times using [], analyzed and estimated incidence rates pooled
Α	~ age group + incidence period + morphology + baseline hazard
В	~ age + age ² + incidence year + incidence year ² + morphology
С	~ age + incidence year + morphology

Results


Results

Conclusions

- CBC incidence continues to decline
- Different approaches to handle missing follow-up time or vital status gave similar results, but:
 - SI results were always lower with narrower confidence intervals
 - MI results were similar to naive approach, but had slightly wider confidence intervals
- Multiple imputation enables inclusion of all cancer registry subjects
- MI can also handle missing covariates

Results

