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Detailed trend analyses and up-to-date estimates of cancer incidence and
mortality using multidimensional penalized splines : the French example
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INTRODUCTION AND OBIJECTIVES




National cancer incidence and mortality studies in France — Context

* Partnership:

Francim cancer registries, HCL (biostat.), Santé Publique France, Institut national du cancer

* Study updated every 5 years, with 73 cancer sites or sub-sites analysed

(with an in-between update for 20 main cancer sites)

* National cancer incidence has to be estimated (cancer registries cover 20% of the population):
=> Not the subject today

=> Method will be presented on mortality, to keep focused on how we model trends



These studies have a double objective
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i) Provide detailed trend analyses, according to year or birth cohort

ii) Provide up-to-date incidence and mortality estimate

= Need for short-term projections (3 years in the last main study: 2015 - 2018)

o J




What is our view on this problematic ?

Observed rates

Female lung cancer mortality

—
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=> Rates: points over the lexis diagram, with random
variability

AGE YEAR COHORT DEATH
60 2000 1940
61 2000 1939
62 2000 1938
63 2000 1937

PY RATE

62 272485.0 22.754
70 280991.0 24.912
74 280194.0 26.410
69 282511.5 24.424



What is our view on this problematic ?

Observed rates

Smooth rates (modelled)
Model

Female lung cancer mortality

I > Female lung cancer mortality
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=> Rates: points over the lexis diagram, with random - Smooth surface, modelled by a function of age and year
variability

AGE YEAR COHORT DEATH
60 2000 1940
61 2000 1939
62 2000 1938
63 2000 1937

In particular, trends may vary smoothly with ages...
PY RATE

62 272485.0 22.754
70 280991.0 24.912

= All indicators (and Cls) retrieved from these modelled rates
74 280194.0 26.410
69 282511.5 24.424

Projections made by extending the surface over time..

— Rates can be described as well according to birth cohort
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METHOD

lllustrated on mortality



Data

* National mortality data 1975-2015 (in the last main study)

* Aggregated by annual age and annual year
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* Flexible Poisson regression model, using multidimensional penalized splines (MPS) as introduced
by Wood (Wood 2016 & 2017)

, D: number of deaths, PY: person-years,
Dg, ~ Poisson (g, -PYyy ) P y

a : age at death and vy : year of death

Uay : mortality rate for age a and yeary

Log(e,y)= MPS(a,y), MPS(a,y) :  general function of age and year

where parameters of this spline are estimated by maximizing a penalized likelihood
\ Uhry IJE 2020 /

* Rsoftware, function gam of the package mgcv




We’ll see now

—  What is a regression spline ?

=  Which type of splines is suitable for short-term projections ?

= What is a multidimensional spline ?

= What is the role of penalization in MPS ?



1 — What is a regression spline ?

Splines are piecewise polynomial - usually cubic (degree 3); the junction points are called knots

— Flexible functions

— Key advantages over polynomials :
- Local regression (no influence of distant point)

- For more flexibility, we add knots (no need to increase the degree of the polynomial)

— Example: a cubic spline with one knot placed at year k has 5 parameters :

fQ) =Bo+ By + B2.y* + B3y> + Pu Iy = k). (y — k)®
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2 — Which type of splines is suitable for short-term projections ?

* Restricted splines (also called natural splines) are constrained to be linear beyond their last knot

(called boundary knot)

* This is an interesting feature for projections :

Rate

Projection is linear (here, on the log-scale )

Location of the boundary knot define the number of years on which the slope is estimated:

=> user choice

Estimates according to the boundary knot position

i 1
I I 1 I I
1980 1990 2000 2010 2020

Year

=> Similar fit and similar projection
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— Bound.k: 2016
— Bound.k: 2021
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3 — What is a multidimensional spline ? (here, bidimensional)

Simplified example:

- Consider a linear effect of year ( basis for year h) :

h(y) = ag + ayy

~

13



3 — What is a multidimensional spline ? (here, bidimensional)

Simplified example:

- Consider a linear effect of year ( basis for year h) :
h(y) = ag+ ayy

- Let now the intercept and slope vary with a quadratic effect of age (basis for age g)

g(a) =y +via+v,a?

-

~

/
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3 — What is a multidimensional spline ? (here, bidimensional)

Simplified example:

-

Consider a linear effect of year ( basis for year h) :
h(y) = ap + ary
Let now the intercept and slope vary with a quadratic effect of age (basis for age g)

g(a) =y +via+v,a?

The bidimensional effect of age and year is build as the tensor product h(y) ® g(a)

(term-by-term multiplication of h and g bases):

MS(a,y) = h(y) @ g(a) = (By + fra +p,a*) + (B3 + fra+Psa’ )y

~

ao(a) a;(a)

/
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3 — What is a multidimensional spline ? (here, bidimensional)

Simplified example:

/Consider a linear effect of year ( basis for year h) : \

h(y) = ag + ayy

- Let now the intercept and slope vary with a quadratic effect of age (basis for age g)

g(a) =y +via+v,a?

- The bidimensional effect of age and year is build as the tensor product h(y) Q g(a)

(term-by-term multiplication of h and g bases):

MS(a,y) = h(y) @ g(a) = (By + fra +p,a*) + (B3 + fra+Psa’ )y

K (@) 21 (a) /

= MS accounts for age-year interaction

= Itis a varying coefficient model (Hastie,1993): flexible but structured model

16



3 — What is a multidimensional spline ? Continued

In practice, more complex bases are used : restricted cubic splines

-~

Advantages:

Limits:

~

MS are highly flexible, they can model any pattern ...

Many parameters => risk of overfitting (estimates may be erratic)

=> How to benefit from MS flexibility while avoiding overfitting ? Penalization !

.

/

e.g. 7*10=70 parameters if marginal basis of size 10 for age and 7 for year
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4 — What is the role of penalization in MPS?

lllustration for a unidimensional spline f(y):

/

\_

Penalize the likelihood to find a compromise between fit and smoothness of the

estimates :

£,(B12) = L(B) - A j £ (w)?du

v’ This compromise is controlled by smoothing parameter, noted A

v The smoothing parameter is estimated in order to minimize prediction error
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Penalization makes a compromise between fit and smoothness

(a) No penalization (A=0) (b) Too strong penalization ( A force high)
o
= 9 —
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= Overfitting (small insignificant variations )
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=15

= Simple effect but poor fit

(c) Penalization ( A estimated )

— Compromise !
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Penalization for bi-dimensional spline

2 smoothing parameters (A, and A ,,), one for each direction

(a) No penalization (b) Penalization ( )\age and )\year

estimated )

Penalization acts like a selection procedure

=> it adapts the model complexity to the information in the data
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RESULTS: ILLUSTRATIONS

All indicators (and Cls) are retrieved from the modelled rates

( from parameters 8 and their variance-covariance matrix Vp):

Age-specific rates, age-standardized rates (ASR), AAPC, cumulative risk 0-74 yrs, etc..

Source : Last main study (Defossez 2019)
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. . Breast cancer, France, 1990-2018
* Trends in age-standardized rates (ASR)
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1690 1995 2000 2005 2010 2015
Année
Année Variation Annuelle Moyenne( % )
1990 1995 2000 2005 2010 2015 2018 De 1990 De 2010
a2018 a2018
Incidence
72.8 79.8 90.7 97 952 98 999 1.1 01.:1.2] 0.6 [0.3:0.9]
Mortalité
20.2 20 188 174 16 14.7 14 -1.3[-1.4:-1.2] -1.6 [-1.8;-1.4]

Mortalité observée
201 199 18% 174 161 14.8 - - B}

=> ASR and their AAPC may be derived from the model
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Breast cancer, France, 1990-2018
* Trends by age

Incidence, Femme
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=> MPS allows to catch complex trends, e.g. trends at age 60 (green curve) very different form other ages
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LOP and Oesophagus, Men, France, 1990-2018
* Trends by age

LOP Oesophagus
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=> Consistent pattern between incidence and mortality, and between cancer sites with common risk factors
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Graphical fit assessment

LOP mortality, men, France (1975-2018)
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=> Fit assessment remains an important step
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DISCUSSION
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Discussion
* We use a uniqgue MPS model for our two objectives: trend analyses and projection
* Key principle : MS brings flexibility while penalization avoids overfitting

* Advantages of MPS :

K/ Age and year treated as continuous covariates (using annual values) \

- Avoids loss of information due to categorization

Avoids stratification by age-class (or a model with one trend coef by age-class)

Ensures consistency between trends of adjacent ages

v' MPS may model simple as complex effects (non-linearity, interactions); in

particular, trends may varies smoothly with age

v' Using restricted splines, MPS allow to make linear short-term projections (here,

on the log scale), with a slope dependant on age

K - Reactivity to recent change depends on location of the boundary knot => user ch(y




Discussion

Projection
Cls do not account properly for uncertainty in projections
Still, sensitivity analyses on location of the boundary knot may be carried out

We fixed boundary knot 5 years before last year observed => “conservative” strategy

(it avoids projecting uncertain recent inflexion in trends, but less reactive if inflexion is real...)



Discussion

MPS were extended to hazard and excess hazard models (net survival analyses) and
implemented in the R package survPen (Remontet SMMR 2019, Fauvernier 20193,
Fauvernier 2019b)

— We also use MPS for the French excess hazard and net survival cancer trends studies

— Harmonized tool

MPS can have more covariates (e.g. age, year and deprivation index) and can be used

for spatio-temporal models (Ugarte, 2012)



Conclusion

Penalized splines as proposed by Wood are a very interesting and mature tool

Wood made a breakthrough in the field of GAM, by proposing parametric penalized splines,

together with estimation of the smoothing parameters based on clear criteria

Short-term projections are a palliative for up-to-date data... Some will be wrong !

Collective and general demand for “reactivity”

. while carcinogenesis is a long process

. While it takes time to “consolidate recent trends”

To summarize: in France, we carry out trend analyses and short-term projections at
once, in a way where : “forecasting is a natural consequence of the smoothing process”

(Currie 2004), by extending the surface modelled over time
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